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Theoretical foundations have been developed and a mathematical model of dynamic heat- and mass-exchange
processes in a glassmaking furnace has been constructed, which makes it possible to calculate and visualize
nonstationary temperature fields in the furnace volume and nonstationary fields of velocities of convective
glass-mass flow in the molten bath. Test calculations for a specific structure of a glassmaking furnace which
have shown the effectiveness of the model constructed have been performed.

Formulation of the Problem and Theoretical Foundations of Its Solution. The necessity of designing and
creating modern glasses with prescribed properties calls for knowledge of the character and parameters of convective
flows and thermal processes occurring in glassmaking furnaces. On the other hand, the complexity of these heat-ex-
change processes [1, 2] is responsible for the wide range of theoretical and experimental methods and means employed
in studying them.

The present work seeks to construct and investigate a mathematical model of coupled nonstationary heat- and
mass-exchange processes occurring in a glassmaking furnace (Fig. 1).

We pose the problem of obtaining the equations of heat- and mass-exchange processes occurring in the mol-
ten bath and other zones of the glassmaking furnace and of determining and visualizing nonuniform, three-dimensional,
nonstationary temperature fields and fields of velocities of glass-mass flow.

The experience gained by the authors in studying heat- and mass-exchange processes in complex devices and
systems of air-space instrument engineering [3] makes it possible to realize the idea of double application of modern
methods and means of investigation to the problem formulated.

In the molten bath of a standard continuous glassmaking furnace (Fig. 1a, b, and f), there are zones of maxi-
mum (region of the third burner in the melting zone) and minimum temperatures (regions of the first and sixth burners
in the melting zone and production regions in the cooling zone) creating vertical and horizontal temperature gradients
and causing the main thermal convection in the longitudinal direction of the furnace. There are also additional convec-
tive flows in the transverse direction due to the corresponding temperature gradients.

The basic initial equations [4–6] are as follows:
(1) the coupled nonstationary equation of nonisothermal motion of an incompressible viscous continuum in the

Overbeck–Boussinesq approximation

∂V
∂t

 + (V⋅∇ ) V = gβT − 
1
ρ

 grad
____

 P + ν∇ 2
V ; (1)

(2) the energy (heat- and mass-transfer) equation

∂T

∂t
 + V grad

____
 T = k∇ 2

T ; (2)

(3) the continuity equation
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div V = 0 . (3)

The coupled problem described by the system of equations (1)–(3) is solved with allowance for the vertical
temperature gradients occurring in the molten bath of the furnace.

According to [5, 6], it is assumed that the system possesses translational invariance in the coordinate y; there-
fore, the variables in Eqs. (1)–(3) depend on two spatial coordinates: the height z and the horizontal coordinate x,
which is perpendicular to the axis of the convective flows (Fig. 1d).

Let the following representations hold:

Fig. 1. Glassmaking furnace, diagram of heat exchange and of motion of glass-
mass flows (C1, C2, ..., C6, b1, b2, ..., b6, a1, a2, ..., a6 are the geometric di-
mensions): a) standard temperature curve with a temperature rise 1 at the
burner flames; b) longitudinal section of the furnace [2) melting tank, 3) melt-
ing zone, 4) refining zone, 5) gas-medium zone, 6) charging zone, 7) knuckle,
8) water refrigerator, 9) cooling zone, 10) production zone, 11) bed plate, 12)
supporting columns, figures 1, 2, ..., 6 inside the furnace are the numbers of
the burners]; c) cross section of the furnace; d) flow-velocity profiles in the
longitudinal section (U01, U02, and U03, are the maximum horizontal compo-
nents of the velocities of glass-mass flow in the zones of melting, refining,
and cooling respectively; h1 and h2 are the characteristic heights of the glass
mass); e) flow-velocity profiles in the cross section (V01 and V02 are the maxi-
mum horizontal components of the velocities of glass-mass flow in the left-
hand and right-hand zones); f) top view of the glassmaking furnace (figures 1,
2, ..., 6 inside the furnace are the numbers of the burners).
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V = V (u (x, z, t) , w (x, z, t)) , (4)

T (x, z, t) = T0 + ∆T − 
∆T
h

 z + θ (x, z, t) . (5)

Introducing the stream function ψ(x, z, t) such that

u = − 
∂ψ
∂z

 ,   w = 
∂ψ
∂x

 , (6)

we obtain the automatic fulfillment of the continuity equation (3).
Applying the rotor operator to Eq. (1) to eliminate pressure and allowing for representation (5) for the tem-

perature fields, from (1) and (2) we have the equations written in terms of the stream function ψ(x, z, t) and the tem-
perature deviation θ(x, z, t):

∂
∂t

 (∇ 2ψ) = − 
∂ψ
∂x

 
∂
∂z

 (∇ 2ψ) + 
∂ψ
∂z

 
∂
∂x

 (∇ 2ψ) + ν∇ 4ψ + gβ 
∂θ
∂x

 , (7)

∂θ
∂t

 = − 
∂ψ
∂x

 
∂θ
∂z

 + 
∂ψ
∂z

 
∂θ
∂x

 + 
∆T
h

 
∂ψ
∂z

 + k∇ 2θ . (8)

We transform (7) and (8) to a system of ordinary differential equations based on the Galerkin method [5, 6].
For this purpose we introduce the following representations of the functions ψ(x, z, t) and θ(x, z, t):

ψ (x, z, t) = ψ1 (t) sin 
πx

λ
 sin 

πz
h

 , (9)

θ (x, z, t) = θ1 (t) cos 
πx

λ
 sin 

πz
h

 − θ2 (t) sin 
2πz
h

 , (10)

u = − 
π
h

 ψ1 (t) sin 
πx

λ
 cos 

πz
h

 ,   w = 
π
λ

 ψ1 (t) cos 
πx

λ
 sin 

πz
h

 . (11)

In accordance with the Galerkin method, functions (9)–(11) exactly satisfy the boundary conditions

w z=0,h = 0 ,   
∂u

∂z



 z=0,h

 = 0 ,   θ z=0,h = 0 ,   ψ z=0,h = 0 . (12)

The impermeability of the bath walls and the presence of the free glass-mass surface are taken into account (tangential
stresses are absent for z = h).

Now, according to the Galerkin method, by substituting (9) and (10) into (7) and (8) and disregarding the
harmonics of third order or higher, after transformations we obtain the following system of nonlinear ordinary differ-
ential equations:

ψ
.

1 = − 
νπ2

 (λ2
 + h

2)

λ2
h

2
 ψ1 + 

gβλh
2

π (λ2
 + h

2)
 θ1 , (13)

θ
.
1 = − 

π2

λh
 ψ1θ2 + ∆T 

π

λh
 ψ1 − 

kπ2
 (λ2

 + h
2)

λ2
h

2
 θ1 , (14)
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θ
.
2 = 

π2

2λh
 ψ1θ1 − k 

4π2

h
2  θ2 . (15)

The uncoupled problem [3, 4] described by the equations which represent a particular case of system (1)–(3)
without nonlinear terms is solved with allowance for the horizontal temperature gradients. It is assumed that the con-
figuration of the temperature field, which has the horizontal components, is known and prescribed.

Under the assumptions made, the solving system of equations and relations in the polar coordinate system will
take the following form:

(1) the equation of nonisothermal motion of a viscous continuum

∂2
Vϕ (z, ϕ)

∂z
2

 = 
1

µR
 
∂P (ϕ)

∂ϕ
 − 

Fϕ (ϕ)

ν
 ; (16)

(2) the projection of mass forces

Fϕ = − g [1 − β∆T (ϕ)] cos ϕ ; (17)

(3) the configuration of the temperature field

∆T (ϕ) = ∆T0 cos ϕ ; (18)

(4) the boundary conditions

Vϕ (0, ϕ) = Vϕ (hann, ϕ) = 0 . (19)

Integrating (16) with respect to z with account for (17) and (18) and boundary conditions (19), we have the
following expression for the velocity component:

Vϕ (z, ϕ) = 




1

µR
 
dP

dϕ
 − 

Fϕ

ν



 z (z − hann) ⁄ 2 . (20)

Averaging (20) from 0 to 2π over ϕ and from 0 to hann over z and taking into account that P(2π) − P(0) =
0, we obtain the formula

sVϕt = 
gβ∆T0

ν
 
hann

2

12
 . (21)

As we see, the flow-velocity component due to the horizontal temperature gradients is in direct proportion to
the coefficient of thermal expansion of the glass mass and the temperature difference and in inverse proportion to the
viscosity of the glass mass. To apply the relation obtained to evaluation of the convection in the molten bath of the
glassmaking furnace we introduce the weight factor p D hann

2 /12. Varying this coefficient, we can select the prescribed
component of the flow velocity, which is due to the horizontal temperature gradients.

Thus, for evaluation of the maximum components of the velocities of glass-mass flow caused by the horizon-
tal temperature gradients in the gravitational field with allowance for the continuity of the flow we can use the fol-
lowing relations:

sVϕt = 
gβ∆T0

ν
 p ,   sWϕt = 

gβ∆T0h

νλ
 p . (22)

The values of the velocities determined by formulas (22) are involved as additional terms in the representations of the
velocity fields (11):
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u = 



− 

π
h

 ψ1 (t) & sVϕt



 sin 

πx

λ
 sin 

πz
h

 ,   w = 




π
λ

 ψ1 (t) % sWϕt



 cos 

πx

λ
 sin 

πz
h

 . (23)

The nonlinear equations and relations (4)–(23) obtained represent a basic theoretical foundation for solution of
the formulated problem of construction of a mathematical model of heat- and mass-exchange processes in a glassmak-
ing furnace.

Mathematical Model. For a comprehensive analysis of the dynamic thermal processes in a glassmaking fur-
nace we have constructed a mathematical model described by a system of differential equations and analytical relations
which enable us to allow for heat and mass transfer by conduction, free and forced convection, and radiation.

For description of the heat- and mass-exchange processes in the glass mass filling the molten bath of the
glassmaking furnace we employ the differential equations and relations obtained of the form (4)–(23). For description
of the heat- and mass-exchange processes in other zones of the furnace we use the differential equations of a modified
elementary-balance method [3].

The external heat-release sources, heat exchange with the ambient medium, operation of the system of auto-
matic temperature control, thermophysical and geometric characteristics of the structural elements of the furnace, the
glass mass, the charged mixture, and the slag (density, heat capacity, thermal conductivity, viscosity, emissivity of the
surfaces, and others) are allowed for on the right-hand sides and in the coefficients of the equations.

We have also developed the computation algorithms and the algorithms of transition from the initial system
of partial equations to a system of nonlinear ordinary differential equations describing the considered heat-exchange
processes in the glassmaking furnace with allowance for the basic relations characteristic of the processes of glassmak-
ing [1–3].

The complete system of differential equations of the mathematical model of heat- and mass-exchange proc-
esses in the longitudinal section of the glassmaking furnace has the following form:

the burners and the thermal-control system

c1T
.

1 + q1,2 (T1 − T2) + p1q1,7 (T1 − T7) + p2q1,13 (T1 − T13) = N1 ,

c2T
.
2 + q1,2 (T2 − T1) + p2q2,14 (T2 − T14) + q2,3 (T2 − T3) + p1q2,8 (T2 − T8) = N2 ,

c3T
.
3 + q2,3 (T3 − T2) + p2q3,15 (T3 − T15) + q3,4 (T3 − T4) + p1q3,9 (T3 − T9) = N3 ,

c4T
.
4 + q3,4 (T4 − T3) + p2q4,16 (T4 − T16) + q4,5 (T4 − T5) + p1q4,10 (T4 − T10) = N4 ,

c5T
.
5 + q4,5 (T5 − T4) + p2q5,17 (T5 − T17) + q5,6 (T5 − T6) + p1q5,11 (T5 − T11) = N5 ,

c6T
.
6 + q5,6 (T6 − T5) + p2q6,18 (T6 − T18) + p1q6,12 (T6 − T12) = N6 ;

(24)

the arch and lateral walls in the melting zone

c7T
.
7 + p1q1,7 (T7 − T1) + q7,8 (T7 − T8) + q7med (T7 − Tmed1) = 0 ,

c8T
.

8 + q7,8 (T8 − T7) + p1q2,8 (T8 − T2) + q8,9 (T8 − T9) + q8med (T8 − Tmed2) = 0 ,

c9T
.

9 + q8,9 (T9 − T8) + p1q3,9 (T9 − T3) + q9,10 (T9 − T10) + q9med (T9 − Tmed3) = 0 ,

c10T
.

10 + q9,10 (T10 − T9) + p1q4,10 (T10 − T4) + q10,11 (T10 − T11) + q10med (T10 − Tmed4) = 0 ,

c11T
.

11 + q10,11 (T11 − T10) + p1q5,11 (T11 − T5) + q11,12 (T11 − T12) + q11med (T11 − Tmed5) = 0 ,

c12T
.

12 + q11,12 (T12 − T11) + p1q6,12 (T12 − T6) + q12med (T12 − Tmed6) + q12,29 (T12 − T29) = 0 ;

(25)
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the mixture and the glass mass in the surface layer in the melting zone

c13T
.
13 + q13,14 (T13 − T14) + p2q1,13 (T13 − T1) + q13med (T13 − Tmed1) = 0 ,

c14T
.

14 + q13,14 (T14 − T13) + q14,15 (T14 − T15) + p2q2,14 (T14 − T2) + q14med (T14 − Tmed2) = 0 ,

c15T
.

15 + q14,15 (T15 − T14) + q15,16 (T15 − T16) + p2q3,15 (T15 − T3) + q15med (T15 − Tmed3) = 0 ,

c16T
.

16 + q15,16 (T16 − T15) + q16,17 (T16 − T17) + p2q4,16 (T16 − T4) + q16med (T16 − Tmed4) = 0 ,

c17T
.

17 + q16,17 (T17 − T16) + q17,18 (T17 − T18) + p2q5,17 (T17 − T5) + q17med (T17 − Tmed5) = 0 ,

c18T
.

18 + q17,18 (T18 − T17) + p2q6,18 (T18 − T6) + q18med (T18 − Tmed6) + q18,26 (T18 − T26) = 0 ;

(26)

the mixture and the glass mass in the surface layer in the cooling zone

c26T
.

26 + q18,26 (T26 − T18) + q26,27 (T26 − T27) + p1q26,29 (T26 − T29) + q26med (T26 − Tmed7) = 0 ,

c27T
.

27 + q26,27 (T27 − T26) + q27,28 (T27 − T28) + p1q27,30 (T27 − T30) + q27med (T27 − Tmed8) = 0 ,

c28T
.

28 + q27,28 (T28 − T27) + p1q28,31 (T28 − T31) + q28med (T28 − Tmed9) = 0 ;

(27)

the arch and lateral walls in the cooling zone

c29T
.

29 + q12,29 (T29 − T12) + p1q26,29 (T29 − T26) + q29,30 (T29 − T30) + q29med (T29 − Tmed7) = 0 ,

c30T
.

30 + q29,30 (T30 − T29) + p1q27,30 (T30 − T27) + q30,31 (T30 − T31) + q30med (T30 − Tmed8) = 0 ,

c31T
.

31 + q30,31 (T31 − T30) + p1q28,31 (T31 − T28) + q31med (T31 − Tmed9) = 0 ;

(28)

the equation of motion of the glass mass in the melting zone (the first to third burners)

ψ
.

1melt = − 
νmeltπ

2
 (λmelt

2
 + hmelt

2 )

λmelt
2

hmelt
2  ψ1melt + 

gβλmelthmelt
2

π (λmelt
2

 + hmelt
2 )

 θ1melt ,

θ
.
1melt = − 

π2

λmelthmelt

 ψ1meltθ2melt + 
(T15 − T13) π

λmelthmelt

 ψ1melt − 
kmeltπ

2
 (λmelt

2
 + hmelt

2 )

λmelt
2

hmelt
2  θ1melt ,

θ
.
2melt = 

π2

2λmelthmelt

 ψ1meltθ1melt − kmelt 
4π2

hmelt
2  θ2melt ;

(29)

the fields of temperatures and velocities of the glass mass in the melting zone (the first to third burners)

Tmelt (x, z, t) = (T13 + T14 + T15) ⁄ 3 + θmelt (x, z, t) ,

ψmelt (x, z, t) = ψ1melt (t) sin 
πx

λmelt
 sin 

πz
hmelt

 ,

θmelt (x, z, t) = θ1melt (t) cos 
πx

λmelt
 sin 

πz
hmelt

 − θ2melt (t) sin 
2πz
hmelt

 ;
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umelt = − 
π

hmelt
 ψ1melt (t) sin 

πx

λmelt
 cos 

πz
hmelt

 − p9 
gβ

νmelt
 (T15 − T13) sin 

πx

λmelt
 cos 

πz
hmelt

 ,

wmelt = 
π

λmelt
 ψ1melt (t) cos 

πx

λmelt
 sin 

πz
hmelt

 + p9 
hmelt

λmelt
 

gβ
νmelt

 (T15 − T13) cos 
πx

λmelt
 sin 

πz
hmelt

 ;

(30)

the equations of motion of the glass mass in the refining zone (the fourth to sixth burners)

ψ
.

1ref = − 
νrefπ

2
 (λref

2
 + href

2 )

λref
2

href
2

 ψ1ref + 
gβλrefhref

2

π (λref
2

 + href
2 )

 θ1ref ,

θ
.
ref = − 

π2

λrefhref

 ψ1refθ2ref + 
(T16 − T18) π

λrefhref

 ψ1ref – 
krefπ

2
 (λref

2
 + href

2 )

λref
2

href
2

 θ1ref ,

θ
.
2ref = 

π2

2λrefhref

 ψ1refθ1ref − kref 
4π2

href
2  θ2ref ;

(31)

the fields of temperatures and velocities of the glass mass in the refining zone (the fourth to sixth burners)

Tref (x, z, t) = (T16 + T17 + T18) ⁄ 3 + θref (x, z, t) ,

ψref (x, z, t) = ψ1ref (t) sin 
πx

λref
 sin 

πz
href

 ,

θref (x, z, t) = θ1ref (t) cos 
πx

λref
 sin 

πz
href

 − θ2ref (t) sin 
2πz
href

 ,

uref = − 
π

href
 ψ1ref (t) sin 

πx

λref
 cos 

πz
href

 + p9 
gβ
νref

 (T16 − T18) sin 
πx
λref

 cos 
πz
href

 ,

wref = 
π

λref
 ψ1ref (t) cos 

πx

λref
 sin 

πz

href
 − p9 

href

λref
 
gβ
νref

 (T16 − T18) cos 
πx

λref
 sin 

πz

href
 ;

(32)

the equations of motion of the glass mass in the cooling zone

ψ
.

1cool = − 
νcoolπ

2
 (λcool

2
 + hcool

2 )

λcool
2

hcool
2

 ψ1cool + 
gβλcoolhcool

2

π (λcool
2

 + h
2)

 θ1cool ,

θ
.
1cool = − 

π2

λcoolhcool

 ψ1coolθ2cool + 
(T26 − T28) π

λcoolhcool

 ψ1cool − 
kcoolπ

2
 (λcool

2
 + hcool

2 )

λcool
2

hcool
2  θ1cool ,

θ
.
2cool = 

π2

2λcoolhcool

 ψ1coolθ1cool − kcool 
4π2

hcool
2  θ2cool ;

(33)

the fields of temperatures and velocities of the glass mass in the cooling zone

Tcool (x, z, t) = (T26 + T27 + T28) ⁄ 3 + θcool (x, z, t) ,

1099



ψcool (x, z, t) = ψ1cool (t) sin 
πx

λcool
 sin 

πz
hcool

 ,

θcool (x, z, t) = θ1cool (t) cos 
πx

λcool
 sin 

πz
hcool

 − θ2cool (t) sin 
2πz
hcool

 ,

ucool = − 
π

hcool
 ψ1cool (t) sin 

πx

λcool
 cos 

πz
hcool

 + p9 
gβ

νcool
 (T26 − T28) sin 

πx

λcool
 cos 

πz
hcool

 ,

wcool = 
π

λcool
 ψ1cool (t) cos 

πx

λcool
 sin 

πz
hcool

 − p9 
hcool

λcool
 

gβ
νcool

 (T26 − T28) cos 
πx

λcool
 sin 

πz
hcool

 .

(34)

The law of control of the temperature in the ith gas burner is

Ni = 











Ni
max

   at   Ti
pr

 − Ti ≥ Ti
lin

 ,

Ni
max

 (Ti
pr

 − Ti) ⁄ Ti
lin

   at   0 ≤ Ti
pr

 − Ti ≤ Ti
lin

 ,

0   at   Ti
pr

 − Ti ≤ 0 .

(35)

Analogous equations have also been derived for the cross section of the glassmaking furnace.
The systems of equations and relations obtained are nonlinear and they are solved with standard methods (for

example, the Runge–Kutta method).
Characteristics of the Software System and Results of Mathematical Modeling and Their Visualization.

The set-up base of the initial data for calculation of the heat- and mass-exchange processes in a glassmaking furnace
includes the following basic modules: calculation parameters, thermophysical parameters, geometric parameters, and
correction factors.

From the initial database, we calculate the coefficients of the model that allow for the conductive, convective,
and radiant heat exchange in the furnace in accordance with [3].

The input data of the mathematical model constructed are the structural parameters of the glassmaking fur-
nace, the thermophysical characteristics of materials and media, temperature disturbing and controlling factors, and
other characteristics.

The output data are the three-dimensional, nonuniform, nonstationary temperature fields and fields of velocities
of glass-mass flow in the functional zones of the glassmaking furnace.

The total number of calculation points of the mathematical model at which one determines the temperature
field in the volume of the glassmaking furnace and the field of flow velocities of the glass mass in the molten bath
is C5000; about C700 parameters are visualized and put out to the protocol at each instant of time with a prescribed
discreteness.

In the mathematical model developed and in the supporting TKSTEKLO software system, provision is made
for variation of the characteristics of melting regimes and the parameters of the basic structural scheme of the glass-
making furnace.

The TKSTEKLO software system for calculation and visualization of thermal processes in a glassmaking fur-
nace has been realized in two versions in the FORTRAN and C++ programming languages to ensure the maximum
speed of calculation and clear visualization of the stationary and nonstationary output data.

The total volume of disk space occupied by the software system is 3.2 Mb. The requirements imposed on the
computer are as follows: presence of MS DOS and Windows 95 (or higher) operating systems, no less than 8 Mb of
RAM, and monitor resolution no less than 800 × 600 pixels. The calculation time of the nonstationary processes of
heat exchange on Pentium-III and -IV computers is 800 to 1500 times shorter than the real duration of the processes,
which enables us to solve not only the analysis problems but also the synthesis problems on optimization of the fur-
nace parameters and the control actions.
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The constructed mathematical model of dynamic thermal processes in a glassmaking furnace is qualitatively
and quantitatively adequate to the real regime of melting of glass. As is shown by the investigations [3] and the pre-
liminary comparison of the data of computer calculations and field measurements made under the conditions of glass
melting in the actual furnace of the "Saratovsteklo" Public Corporation, the number of calculation points employed en-
sures accuracy of the calculation of the temperature fields and the fields of the velocities of glass-mass flow at a level
of 10 to 20% in the nonstationary regimes of melting of glass and of units of percent in the steady-state regimes of
melting of glass.

As the test calculation, we have modeled the regime of heating of a standard structure of a glassmaking fur-
nace from the initial temperature T0 = 1400oC to the temperature of a prescribed working state of melting of glass. 

Output of the visualized information on calculation of the temperature field and the convective glass-mass
flows to the monitor of the computer is shown in Fig. 2.

The isotherms of the temperatures in the molten bath and in the zone of the furnace’s gas medium are shown
as contrasting shades of black and white (these pictures are colored on the screen of the monitor) in the scanning
mode "Temperature Field" (Fig. 2a). The figures show the values of the temperatures at each instant of time.

The fields of the velocities of glass-mass flow in vector form are shown in the scanning mode "Convective
Flows" (Fig. 2b).

Furthermore, at each instant of time, the user can point to any zone of the molten bath of the furnace with
the mouse cursor and the values of the temperature and the components of the velocities of glass-mass flows in this
zone will appear on the monitor. All the results of calculation of the temperature fields and velocity fields can be writ-
ten in the protocol of the calculation.

The transient thermal and convective processes in different zones of the glassmaking furnace are given in Fig. 3.
As we see, changes in the temperature and the velocity of flow of the glass mass are the most intense in the

melting zones below the central burners.
The amplitude of flow-velocity oscillations in the zone of melting of glass below the third burner attains

C0.017 m/sec for a steady-state value of C0.0083 m/sec. The velocities of flow of the glass mass in the refining and
cooling zones are approximately half as low. In the transition regime, the flow velocities have a damping oscillatory

Fig. 2. Steady-state temperature field (a) and convective flows of the glass
mass (b) in the longitudinal section of the glassmaking furnace (figures 1, 2,
..., 6 in the circles inside the furnace are the numbers of the burners; the re-
maining figures are the values of the temperatures in different zones of the
furnace and of the ambient medium: time, within 20 h after the beginning of
the processes; the temperature at the indicated + point (a) of the glass mass is
1350oC; the horizontal (−15 m/h) and vertical (−2 m/h) components of the ve-
locities at the indicated + point (b) of the glass mass.
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character. The frequency of the oscillations of the velocity of glass-mass flow is approximately twice as high as the
oscillation frequency in the refining zone.

Thus, the constructed mathematical model realized in the software system enables one to solve various practi-
cal problems of analysis of the heat and mass exchange in a glassmaking furnace and the synthesis problems on opti-
mization of the parameters of the furnace, the characteristics of the glass mass, and control actions without carrying
out series of expensive, energy-intensive, and lengthy field measurements.

NOTATION

∇ , vector operator; grad
____

, gradient vector of the scalar function; ∇ 2, Laplace operator; ρ, density of the glass
mass, kg/m3; V(x, z, t), vector field of flow velocities; T(x, z, t), temperature field; P(x, z, t), pressure field; g, gravi-
tational acceleration vector, m/sec2; β, coefficient of thermal expansion of the glass mass, oC−1; ν, kinematic viscosity
of the glass mass, m2/sec; k, thermal diffusivity of the glass mass, m2/sec; t, time; u(x, z, t) and w(x, z, t), compo-
nents of the velocity field along the x and z axes, m/sec; h, characteristic height of the glass-mass layer, m; T0, nomi-
nal temperature, oC; ∆T, temperature difference, oC; θ(x, z, t), deviation from the z-linear profile of the temperature
field, oC; ψ(x, z, t), stream function, m2/sec; ψ1(t), θ1(t), and θ2(t), amplitudes in the representations of the stream
function, m2/sec; λ, characteristic dimension of the closed trajectory of convective glass-mass flow in the x direction,
m; r, ϕ, polar coordinates; Fϕ, projection of the reduced mass forces onto the ϕ axis in the polar coordinate system,
m/sec2; Vϕ(z, ϕ), projection of the component of the flow-velocity vector in the polar coordinate system, m/sec; P(ϕ),
pressure, Pa; hann and R, geometric parameters (thickness and average radius) of the annular convective flows, m;
∆T(ϕ), configuration of the temperature field, oC; ∆T0, maximum horizontal temperature difference, oC; µ, dynamic
viscosity of the glass mass, Pa⋅sec; z = r − R, coordinate of the height of the molten glass-mass zone, m; sVϕt and
sWϕt, average components of the vector of the glass-mass-flow velocity, m/sec; p, correction factor; T1, T2,  .. .,  T31
and T

.
1, T

.
2, ..., T

.
31, temperatures averaged over volume elements, oC, and their time derivatives, oC/sec; c1, c2, ...,

c31, effective heat capacities, J/ oC (the absence of subscripts from 19 to 25 is attributed to the fact that these number
are "occupied" by the equations of motion of the glass mass in different zones of the furnace); q1,2, q1,7 ..., effective
thermal conductivities between volume elements, W/oC (the subscripts denote the numbers of the volumes between
which we have heat exchange); q7med, q8med ..., q31med, thermal conductivities with the ambient medium, W/oC (the
figure in the subscript denotes the number of the volume element); p1, p2, and p9, correction factors of the model (the
presence of the omitted subscripts is due to the fact that in the paper there are no equations of the furnace cross sec-
tion where they are employed); Tmed1, Tmed2 ..., Tmed9, average temperatures of the ambient medium in different zones
around the furnace, oC; Ni and Ni

max, strengths of the heat sources in a linear-relay-type thermal-control system, W (i

Fig. 3. Transient processes in the glassmaking furnace: 1, 2, and 3) maximum
temperatures T(t), oC, in the zones of the gas burners and of the furnace arc
and the upper glass-mass layer; 4, 5 and 6) maximum horizontal velocities
 V , m/sec, of the glass mass in the zones of refining, cooling, and melting.
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= 1, 2, ..., 6 corresponds to the number of the burner in the furnace); Ti. controlled temperature in the volume ele-
ment, oC; Ti

pr and  Ti
lin, parameters of the law of temperature control (prescribed temperature and zone of linear

change of the temperature), oC. Subscripts and superscripts: ann, annular; med, medium; melt, melting; ref, refining;
cool, cooling; max, maximum; pr, prescribed; lin, linear.
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